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Errors in representing boundary-layer clouds significantly influence cloud feedbacks, 
the hydrological sensitivity, regional climate projections… 

—>  Investigating coherent structures in Large Eddy Simulations for better 
understanding of PBL motions (MESO-NH model)

Representing the boundary layer in climate models



Object-oriented sampling
• Definition of coherent structures :  
1. Ensemble of grid boxes satisfying the conditional sampling CS = {s’(x,y,z)>m*𝜎s(z)} based 

on Couvreux et. al (10) (with s’(x,y,z) anomalies of tracer concentrations) 
2. Object  = Contiguous cells of positive CS (sharing face, edge, corner) 
3. Selected object = Object with volume larger than Vmin

https://gitlab.com/tropics/objects
Collaborative project:

StCu by FIRE

https://gitlab.com/tropics/objects


Object-oriented sampling

• Advantages:  
• 3D geometrical coherence 
• Individual object characterisation 
• No a priori assumptions  

of flow characteristics (𝜔, ql)

• Main results for StCu: 
• Objects cover 20% of the volume, but 

contribute to ~80% of moisture and 
temperature resolved fluxes 

• Coherent downdrafts matter !

StCu by FIRE

Brient et. al, 19 (GRL)

• Definition of coherent structures :  
1. Ensemble of grid boxes satisfying the conditional sampling CS = {s’(x,y,z)>m*𝜎s(z)} based 

on Couvreux et. al (10) (with s’(x,y,z) anomalies of tracer concentrations) 
2. Object  = Contiguous cells of positive CS (sharing face, edge, corner) 
3. Selected object = Object with volume larger than Vmin
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A diversity of boundary-layer situations
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Are coherent structures consistent across boundary layers?



Clear-sky Stratus/Fog Stratocumulus St-to-Cu Cumulus

Continental

Marine

IHOP

FIRE ASTEX RICO

BOMEXCONSTRAIN

ARMCu

CGILS (s12)
DYCOMS

AYOTTE

Warm
Cold

Microphysics

A diversity of boundary-layer situations

Clear-sky Stratus/Fog Stratocumulus St-to-Cu Cumulus

Continental

Marine

Are coherent structures consistent across boundary layers?



Clear-sky Stratus/Fog Stratocumulus St-to-Cu Cumulus

Continental

Marine

IHOP

FIRE ASTEX RICO

BOMEXCONSTRAIN

ARMCu

CGILS (s12)
DYCOMS

AYOTTE

Warm
Cold

Microphysics

A diversity of boundary-layer situations

• A new tracer emitted above the domain-average 
cloud base —> Tracking structures entrained in 
the mixed layer 

• Updrafts are separated by positive/negative 
vertical motions —> Returning shells 

• Definition of  “PBL-top”  tracers for clear skies

First layer where:

Update since Brient et. al (19):
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Are coherent structures consistent across boundary layers?
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Characteristics of boundary layers
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Time evolution of boundary layers
Relative Humidity (%)

Average contribution 
to fluxes

Entrained downdraft
Updraft

Sub-cloud downdraft
Returning shells

65%

25%
10%

Clear Sky



Time evolution of boundary layers
Relative Humidity (%)

Average contribution 
to fluxes

Entrained downdraft
Updraft

Sub-cloud downdraft
Returning shells

65%

25%
10%

Clear Sky

Cloud Fraction (%)

50%
35%
4%
4%

40%
40%
2%
1%

Day Night

StCu
Average contribution 

to fluxes



Time evolution of boundary layers
Relative Humidity (%)

Average contribution 
to fluxes

Entrained downdraft
Updraft

Sub-cloud downdraft
Returning shells

65%

25%
10%

Clear Sky

Cloud Fraction (%)

50%
35%
4%
4%

40%
40%
2%
1%

Day Night

StCu
Average contribution 

to fluxes

St-to-Cu

Cloud Fraction (%)

t+8h t+26h

60%
5%
4%
5%

95%
2%
1%

17%

Contribution to 
fluxes



Time evolution of boundary layers
Relative Humidity (%)

Average contribution 
to fluxes

Entrained downdraft
Updraft

Sub-cloud downdraft
Returning shells

65%

25%
10%

Clear Sky

Cloud Fraction (%)

50%
35%
4%
4%

40%
40%
2%
1%

Day Night

StCu
Average contribution 

to fluxes

St-to-Cu

Cloud Fraction (%)

t+8h t+26h

60%
5%
4%
5%

95%
2%
1%

17%

Contribution to 
fluxes

Cu

85%
2%
10%
10%

Cloud Fraction (%)

Average contribution 
to fluxes

60%
1%
20%
5%

sub-cloud 
only



Time evolution of boundary layers
Relative Humidity (%)

Average contribution 
to fluxes

Entrained downdraft
Updraft

Sub-cloud downdraft
Returning shells

65%

25%
10%

Clear Sky

Cloud Fraction (%)

50%
35%
4%
4%

40%
40%
2%
1%

Day Night

StCu
Average contribution 

to fluxes

St-to-Cu

Cloud Fraction (%)

t+8h t+26h

60%
5%
4%
5%

95%
2%
1%

17%

Contribution to 
fluxes

Cu

85%
2%
10%
10%

Cloud Fraction (%)

Average contribution 
to fluxes

60%
1%
20%
5%

sub-cloud 
only



Coherent structures in observations
Are LES realistic?

Can we observe boundary-layer coherent structures?
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Conclusions

Future work about boundary-layer coherent structures:

Coherent structures in LES using the MESO-NH model

Updrafts contribute the most to heat and moisture transport
Downdrafts contribute significantly to transport only in StCu 
simulations (FIRE)
Downward coherent structures exist below the cloud base and ressemble 
coherent downdrafts of convective clear-sky situations (IHOP)

Returning shells are close to updrafts but contribute only to ~10% 
of fluxes



Conclusions

Future work about boundary-layer coherent structures:

• Building better unified parameterizations for low-clouds
How should be represented downward motions? 
Is the top-hat approximation relevant for downdrafts?

• Process-oriented analysis of the meso-scale low-cloud organisation
What are the drivers of boundary-layer characteristics? 
Is the distance between updrafts important?

• Low-cloud feedback mechanisms
Changes in coherent structures drive changes in cloudiness. 
How do coherent structures will change with global warming?

Coherent structures in LES using the MESO-NH model

Updrafts contribute the most to heat and moisture transport
Downdrafts contribute significantly to transport only in StCu 
simulations (FIRE)
Downward coherent structures exist below the cloud base and ressemble 
coherent downdrafts of convective clear-sky situations (IHOP)

Returning shells are close to updrafts but contribute only to ~10% 
of fluxes
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Physical understanding of downdrafts

Zhou and Bretherton (19)

Downdraft objects Updraft objects

• Divergence at the top of 
updrafts 

• Convergence where 
downdrafts start 
(20-30m below the 
updraft’s divergence) 

• Updrafts trigger 
downdrafts? Then, 
amplify by buoyancy 
reversal?
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Physical understanding of downdrafts

Witek et. al (11)

Downdraft objects

Updraft objects

• Divergence at the top of 
updrafts 

• Convergence where 
downdrafts start 
(20-30m below the 
updraft’s divergence) 

• Updrafts trigger 
downdrafts? Then, 
amplify by buoyancy 
reversal, or not?

Clear-sky 
(IHOP)

Divergence
(s-1)rH · V

Vertical velocity
! (m s-1)


